本站是简历与博客的结合体,想要了解站主请点击此处。本人目前为学生,会在本网站写一些博客,记录科研学习内容,偶尔可能也会记录一些想法。在目前的学习中,我发现互联网上的中文学术资源太少,于是萌生了写博客的想法,希望将自己所学的一些东西用中文写给更多的人,同时也方便自己将来翻阅复习。目前网站开放评论(为了防广告,初次评论需要经我审核),随时欢迎来访者与我讨论博客内容。注:您可以在这里注册成为本站会员,并登陆您的账户。评论区支持 Markdown 代码,包括数学公式。在 Gravatar 注册账号后可修改评论区头像,只需要使用注册的邮箱进行评论就可以了。若使用 QQ 邮箱评论,则会显示 QQ 头像。评论回复会收到邮件提醒(前提是填写了正确的邮箱),若没有收到提醒邮件,请查看垃圾邮箱。本博客所有内容均遵循 CCBY−NC−SA 4.0 协议。如需转载本站内容,请阅读协议并遵守之。
考虑定义在同一个概率空间 $(\Omega, \mathscr{F}, P)$ 上的两个随机过程 $X$ 和 $Y$。若对于任意时间 $t\ge 0$ 和样本 $\omega \in \Omega$ ,都有 $X_t(\omega) = Y_t(\omega)$,那么我们称随机过程 $X$ 和 $Y$ 相等。在概率测度 $P$ 的意义下,我们还可以定义一些更弱的“相等”:若对任意 $t \ge 0$,有 $P[X_t = Y_t] = 1$,则称随机过程 $Y$ 是 $X$ 的修正;过程 $X$ 和 $Y$ 不可分辨,若它们几乎所有的轨迹相同:$$ P[X_t = Y_t; \forall 0\le t < \infty] = 1. $$“不可分辨”的条件比“修正”的条件更强,因为“不可分辨”要求几乎所有的轨迹相同,在时间尺度上是一种整体性质;而“修正”仅要求轨迹在某一时刻相同,在时间尺度上是点的性质。为了更进一步说明,我们可以考虑如下例子:考虑具有连续密度函数的正值随机变量 $T$,考虑如下随机过程:$$ X_t \equiv 0, \quad Y_t = \displayst
Gillespie 算法与连续时间 Markov 过程Gillespie 算法是一种可以用于采样连续时间 Markov 过程(CTMC)的随机轨迹的算法。这一算法被广泛用于模拟化学反应网络、生物物理过程等随机过程。在介观热力学中,Gillespie 算法被广泛应用于模拟主方程描述的系统,即连续时间 Markov 系统。对于连续时间、离散状态的马尔可夫过程,其概率演化可以由如下主方程表达$$ \frac{\mathrm d p(x, t)}{\mathrm dt} = R p(x, t). $$其中矩阵 $R$ 的矩阵元满足$$ \begin{cases} R_{ij} \ge 0, \quad i \neq j; \\ \\ R_{ii} = \displaystyle{-\sum_{j\neq i}}R_{ij}. \end{cases} $$列和为零的性质保证的概率的守恒(即归一性)。上式表明我们可以将连续时间 Markov 过程视为概率密度在各个状态上的流动过程。实际上,我们也可以考虑大量按初始概率分布的无相互作用粒子,粒子
1. Wiener 过程首先考虑一个离散的一维随机漫步 (random walk),记过程的起始点为 $x=0$,每一步行走距离为 $\Delta x$,向左向右走的概率均为 $1/2$,粒子每过 $\Delta t$ 的时间就移动一次。用 $X(t)$ 记录粒子在 $t$ 时刻的位置,则有$$ X(t) = \sum_{i=1}^{t/\Delta t} \eta_i, $$其中$$ \eta_i = \begin{cases} +\Delta x, \text{ with prob. 1/2 }; \\ -\Delta x, \text{ with prob. 1/2 }. \end{cases} $$由中心极限定理可知,当 $t$ 很大、或者说 $\Delta t$ 很小的时候,$X(t)$ 的分布趋近于高斯分布。此时,我们只需要知道 $X(t)$ 的均值和方差即可确定 $X(t)$ 的概率分布。均值很容易计算,即$$ \langle X(t) \rangle = \frac{t}{\Delta t}\langle\eta_i\rangle = 0; $$其方差为$$ \sigm
最近发现一款国产数学公式 LaTeX 代码识别软件。软件由一些在校大学生开发和维护,支持 Windows 系统电脑以及浏览器在线使用。SimpleTeX 识别算法基于深度学习,有非常高的准确率,且软件完全免费,十分好用!
1. 随机热力学的基本设定近年来,Sosuke Ito 等人逐步建立了热力学的几何表述。尽管理论还在发展初期,但已经显现出其新颖和强大之处。考虑过阻尼 Langevin 方程$$ \dot{\boldsymbol x}(t) = \mu \boldsymbol F_t(\boldsymbol x(t)) + \sqrt{2\mu T} \boldsymbol\xi(t), $$及其对应的 Fokker-Planck 方程$$ \frac{\partial}{\partial t} p_t(\boldsymbol x) = -\nabla\cdot (\boldsymbol v_t(\boldsymbol x) p_t(\boldsymbol x)), $$其中$~\boldsymbol v~$为局域平均速度(local mean velocity)$$ \boldsymbol v_t(\boldsymbol x) = \mu(\boldsymbol F_t(\boldsymbol x) - T\nabla\ln p_t(\boldsymbol x)). $$从$
本文主要参考文献为 Shun-ichi Amari 所著的 Information geometry and its applications.信息几何旨在用几何语言描述概率分布。其在最优传输理论,机器学习等领域有广泛用途。近年来,一些物理学家将信息几何运用于非平衡态热力学中,得到了一系列有趣的结论。本文给出信息几何的简单介绍。本文使用爱因斯坦求和约定,即对式子中相同的上下指标求和。信息几何可以从多个角度引入,本文介绍一种从散度入手的引入方式,这一方式更加直观,不需要太多的微分几何。从度规张量引入的信息几何请参考这里。1. 散度、对偶仿射坐标与测地线信息几何主要讨论由参数控制的概率分布构成的流形$~M~$,称其为概率流形或统计流形。考虑由$~n~$个参数$~\boldsymbol{\xi} = (\xi_1, \xi_2, \cdots, \xi_n)~$控制的概率密度函数$~p(x, \boldsymbol{\xi})~$,这$~n~$个参数张成一个$~n~$维统计流形,流形上的每一个点都唯一确定一个概率分布。容易看出,欧氏距离并不能衡量这个流形上两点之间的距离,因此我们需要新的几何
1. 简介众所周知所有宏观系统都受到热力学第二定律的约束$$ \Delta S + \frac{\Delta Q}{T} = \Sigma \ge 0. $$但系统的可观测性质是如何与 $\Sigma$ 联系的呢?答案由热力学不确定关系(Thermodynamic Uncertainty Relation, TUR)给出。TUR 的一般形式如下$$ \Sigma \ge \frac{2\langle J \rangle^2}{\mathrm{Var}(J)}. $$其中 $J$ 是时间积分的流(例如粒子的位移,热流等等),$\langle J\rangle$ 是流的平均值,$\mathrm{Var}(J)$ 是流的涨落(方差)。TUR 对于连续时间马尔可夫过程的定态(steady state)成立。TUR 给出了一个对熵产生下界的估计。当此估计不为零时,它给出了更加强化的第二定律(相较于 $\Sigma \ge 0$ )。在许多情况下,直接测量熵产生是非常困难的,而流的均值与方差是较易测量的,因此在实验上 TUR 是估计熵产生的一个较好的方法。同时,TUR 也给出了衡量系统的精确程度(
1. 由 Langevin 动力学给出的随机热力学1.1 随机 Langevin 动力学考虑过阻尼 Langevin 动力学,运动方程为$$ \dot{x} = \mu F(x, \lambda) + \zeta $$噪声$~\zeta~$满足$$ \langle \zeta(\tau) \rangle = 0, \quad \langle \zeta(\tau)\zeta(\tau') \rangle = 2D\delta(\tau - \tau') $$其中$~D~$与迁移率$~\mu~$满足爱因斯坦关系$~D = T\mu~$,$~T~$为介质的温度(方便起见这里将$~k_B~$记为$~1~$)。力$~F(x, \lambda)~$可分解为保守部分和非保守部分$$ F(d, \lambda) = -\partial_x V(x, \lambda) + f(x, \lambda). $$其中$~V(x, \lambda)~$是保守势场,$~f(x, \lambda)~$是直接作用于粒子的外力。$~\lambda~$是含时的外部参数,可以简记为$~\lambda(0) = \lamb
本文主要参考文献为 Robert Zwanzig 所著的 Nonequilibrium Statistical Mechanics.1. 布朗运动与 Langevin 方程1.1 Langevin 方程与涨落耗散定理考虑一个球形粒子(半径为$~a~$,质量为$~m~$,坐标为$~x~$,速度为$~v~$)在液体介质中的一维运动,粒子运动的牛顿方程为$$ m\frac{\mathrm d v}{\mathrm d t} = F_{\text{total}}(t) $$其中$~F_{\text{total}}(t)~$是$~t~$时刻作用在粒子上的总的瞬时作用力。粒子与介质的作用是这个力的来源。在牛顿力学中,原则上这不是一个随机力。但想要分析其具体形式是很难做到的。实验告诉我们,在经典情形中,这个力主要是摩擦力,它的形式为$~-\zeta v~$,即与布朗粒子的速度成正比。由流体力学中的 Stokes 定律可知$~\zeta = 6\pi\eta a~$. 故式子变为$$ m\frac{\mathrm d v}{\mathrm d t} \cong -\zeta v $$其解为$
1. 守恒量若一个力学量$~\Gamma = \Gamma(q, \dot q, t)~$不随时间变化,即$~\Gamma~$对时间的全导数为零$$ \frac{\mathrm d \Gamma}{\mathrm d t} = 0 $$那么称$~\Gamma~$为运动常数,其值由初始值决定,即$~\Gamma(q, \dot q, t) = \Gamma(q^{(0)}, \dot q^{(0)}, 0)~$.对于一个自由度为$~s~$的体系,最多有$~2s~$个守恒量,这其中最多有$~2s-1~$个不显含时间$~t~$的守恒量。2. 对称性对于一个变换,我们可以有两种看法,即被动的观点和主动的观点。对某个坐标系下的一些点做变换,我们既可以认为是点的位置变了而坐标系没变,也可以认为是点的位置不变而换用了新的坐标系。对称性,描述了变换下的不变性。若某种事物或性质在变换前后是不变的,那么它就具有某种对称性。比如球体绕任意过直径的直线旋转都不会发生变化,那么它就有旋转对称性;再比如物理实验不论在何时进行,只要条件相同,都能得到同样的结果,这说明物理规律有时间平移对称性。对于一个标量场$~\v
Jiming Zheng
做一点统计物理