考虑定义在同一个概率空间 $(\Omega, \mathscr{F}, P)$ 上的两个随机过程 $X$ 和 $Y$。若对于任意时间 $t\ge 0$ 和样本 $\omega \in \Omega$ ,都有 $X_t(\omega) = Y_t(\omega)$,那么我们称随机过程 $X$ 和 $Y$ 相等。在概率测度 $P$ 的意义下,我们还可以定义一些更弱的“相等”:若对任意 $t \ge 0$,有 $P[X_t = Y_t] = 1$,则称随机过程 $Y$ 是 $X$ 的修正;过程 $X$ 和 $Y$ 不可分辨,若它们几乎所有的轨迹相同:$$ P[X_t = Y_t; \forall 0\le t < \infty] = 1. $$“不可分辨”的条件比“修正”的条件更强,因为“不可分辨”要求几乎所有的轨迹相同,在时间尺度上是一种整体性质;而“修正”仅要求轨迹在某一时刻相同,在时间尺度上是点的性质。为了更进一步说明,我们可以考虑如下例子:考虑具有连续密度函数的正值随机变量 $T$,考虑如下随机过程:$$ X_t \equiv 0, \quad Y_t = \displayst
1. Wiener 过程首先考虑一个离散的一维随机漫步 (random walk),记过程的起始点为 $x=0$,每一步行走距离为 $\Delta x$,向左向右走的概率均为 $1/2$,粒子每过 $\Delta t$ 的时间就移动一次。用 $X(t)$ 记录粒子在 $t$ 时刻的位置,则有$$ X(t) = \sum_{i=1}^{t/\Delta t} \eta_i, $$其中$$ \eta_i = \begin{cases} +\Delta x, \text{ with prob. 1/2 }; \\ -\Delta x, \text{ with prob. 1/2 }. \end{cases} $$由中心极限定理可知,当 $t$ 很大、或者说 $\Delta t$ 很小的时候,$X(t)$ 的分布趋近于高斯分布。此时,我们只需要知道 $X(t)$ 的均值和方差即可确定 $X(t)$ 的概率分布。均值很容易计算,即$$ \langle X(t) \rangle = \frac{t}{\Delta t}\langle\eta_i\rangle = 0; $$其方差为$$ \sigm
本文主要参考文献为 Robert Zwanzig 所著的 Nonequilibrium Statistical Mechanics.1. 布朗运动与 Langevin 方程1.1 Langevin 方程与涨落耗散定理考虑一个球形粒子(半径为$~a~$,质量为$~m~$,坐标为$~x~$,速度为$~v~$)在液体介质中的一维运动,粒子运动的牛顿方程为$$ m\frac{\mathrm d v}{\mathrm d t} = F_{\text{total}}(t) $$其中$~F_{\text{total}}(t)~$是$~t~$时刻作用在粒子上的总的瞬时作用力。粒子与介质的作用是这个力的来源。在牛顿力学中,原则上这不是一个随机力。但想要分析其具体形式是很难做到的。实验告诉我们,在经典情形中,这个力主要是摩擦力,它的形式为$~-\zeta v~$,即与布朗粒子的速度成正比。由流体力学中的 Stokes 定律可知$~\zeta = 6\pi\eta a~$. 故式子变为$$ m\frac{\mathrm d v}{\mathrm d t} \cong -\zeta v $$其解为$
Jiming Zheng
做一点统计物理