考虑定义在同一个概率空间 $(\Omega, \mathscr{F}, P)$ 上的两个随机过程 $X$ 和 $Y$。若对于任意时间 $t\ge 0$ 和样本 $\omega \in \Omega$ ,都有 $X_t(\omega) = Y_t(\omega)$,那么我们称随机过程 $X$ 和 $Y$ 相等。在概率测度 $P$ 的意义下,我们还可以定义一些更弱的“相等”:若对任意 $t \ge 0$,有 $P[X_t = Y_t] = 1$,则称随机过程 $Y$ 是 $X$ 的修正;过程 $X$ 和 $Y$ 不可分辨,若它们几乎所有的轨迹相同:$$ P[X_t = Y_t; \forall 0\le t < \infty] = 1. $$“不可分辨”的条件比“修正”的条件更强,因为“不可分辨”要求几乎所有的轨迹相同,在时间尺度上是一种整体性质;而“修正”仅要求轨迹在某一时刻相同,在时间尺度上是点的性质。为了更进一步说明,我们可以考虑如下例子:考虑具有连续密度函数的正值随机变量 $T$,考虑如下随机过程:$$ X_t \equiv 0, \quad Y_t = \displayst
1. Wiener 过程首先考虑一个离散的一维随机漫步 (random walk),记过程的起始点为 $x=0$,每一步行走距离为 $\Delta x$,向左向右走的概率均为 $1/2$,粒子每过 $\Delta t$ 的时间就移动一次。用 $X(t)$ 记录粒子在 $t$ 时刻的位置,则有$$ X(t) = \sum_{i=1}^{t/\Delta t} \eta_i, $$其中$$ \eta_i = \begin{cases} +\Delta x, \text{ with prob. 1/2 }; \\ -\Delta x, \text{ with prob. 1/2 }. \end{cases} $$由中心极限定理可知,当 $t$ 很大、或者说 $\Delta t$ 很小的时候,$X(t)$ 的分布趋近于高斯分布。此时,我们只需要知道 $X(t)$ 的均值和方差即可确定 $X(t)$ 的概率分布。均值很容易计算,即$$ \langle X(t) \rangle = \frac{t}{\Delta t}\langle\eta_i\rangle = 0; $$其方差为$$ \sigm
1. 随机热力学的基本设定近年来,Sosuke Ito 等人逐步建立了热力学的几何表述。尽管理论还在发展初期,但已经显现出其新颖和强大之处。考虑过阻尼 Langevin 方程$$ \dot{\boldsymbol x}(t) = \mu \boldsymbol F_t(\boldsymbol x(t)) + \sqrt{2\mu T} \boldsymbol\xi(t), $$及其对应的 Fokker-Planck 方程$$ \frac{\partial}{\partial t} p_t(\boldsymbol x) = -\nabla\cdot (\boldsymbol v_t(\boldsymbol x) p_t(\boldsymbol x)), $$其中$~\boldsymbol v~$为局域平均速度(local mean velocity)$$ \boldsymbol v_t(\boldsymbol x) = \mu(\boldsymbol F_t(\boldsymbol x) - T\nabla\ln p_t(\boldsymbol x)). $$从$
本文主要参考文献为 Shun-ichi Amari 所著的 Information geometry and its applications.信息几何旨在用几何语言描述概率分布。其在最优传输理论,机器学习等领域有广泛用途。近年来,一些物理学家将信息几何运用于非平衡态热力学中,得到了一系列有趣的结论。本文给出信息几何的简单介绍。本文使用爱因斯坦求和约定,即对式子中相同的上下指标求和。信息几何可以从多个角度引入,本文介绍一种从散度入手的引入方式,这一方式更加直观,不需要太多的微分几何。从度规张量引入的信息几何请参考这里。1. 散度、对偶仿射坐标与测地线信息几何主要讨论由参数控制的概率分布构成的流形$~M~$,称其为概率流形或统计流形。考虑由$~n~$个参数$~\boldsymbol{\xi} = (\xi_1, \xi_2, \cdots, \xi_n)~$控制的概率密度函数$~p(x, \boldsymbol{\xi})~$,这$~n~$个参数张成一个$~n~$维统计流形,流形上的每一个点都唯一确定一个概率分布。容易看出,欧氏距离并不能衡量这个流形上两点之间的距离,因此我们需要新的几何
1. 马氏过程1.1. 马氏链考虑离散时间的随机过程$~X_n(n = 1, 2, \cdots)~$,$~X_n~$在有限集合内取值。我们称$~X_n~$的所有可能取值为系统的状态。定义转移概率为$$ p_{n+1}(i, j) = \mathbb P(X_{n+1} = j\mid X_n = i, X_{n-1} = i_{n-1}, \cdots, X_0 = i_0) $$转移概率是一个条件概率。这是一个离散时间,离散状态的随机过程。若$~p_{n+1}(i, j) = \mathbb P(X_{n+1} = j\mid X_n = i)~$,则称这个过程具有马氏性(马尔可夫性)。马尔可夫性即是说,转移概率只与当前的状态有关,与先前任何时间的状态都无关。若时刻$~n~$的取值与转移概率无关,即对任意$~n~$都有$$ \mathbb P(X_{n+1} = j\mid X_n = i) = p(i, j) $$则称转移概率具有时齐性,相应的马氏链称作时齐马氏链。转移概率$~p(i, j)~$的相应数值,可以标注在矩阵$~\mathbf P~$的第$~i~$行,第$~j~
Jiming Zheng
做一点统计物理