1. 随机热力学的基本设定近年来,Sosuke Ito 等人逐步建立了热力学的几何表述。尽管理论还在发展初期,但已经显现出其新颖和强大之处。考虑过阻尼 Langevin 方程$$ \dot{\boldsymbol x}(t) = \mu \boldsymbol F_t(\boldsymbol x(t)) + \sqrt{2\mu T} \boldsymbol\xi(t), $$及其对应的 Fokker-Planck 方程$$ \frac{\partial}{\partial t} p_t(\boldsymbol x) = -\nabla\cdot (\boldsymbol v_t(\boldsymbol x) p_t(\boldsymbol x)), $$其中$~\boldsymbol v~$为局域平均速度(local mean velocity)$$ \boldsymbol v_t(\boldsymbol x) = \mu(\boldsymbol F_t(\boldsymbol x) - T\nabla\ln p_t(\boldsymbol x)). $$从$
本文主要参考文献为 Shun-ichi Amari 所著的 Information geometry and its applications.信息几何旨在用几何语言描述概率分布。其在最优传输理论,机器学习等领域有广泛用途。近年来,一些物理学家将信息几何运用于非平衡态热力学中,得到了一系列有趣的结论。本文给出信息几何的简单介绍。本文使用爱因斯坦求和约定,即对式子中相同的上下指标求和。信息几何可以从多个角度引入,本文介绍一种从散度入手的引入方式,这一方式更加直观,不需要太多的微分几何。从度规张量引入的信息几何请参考这里。1. 散度、对偶仿射坐标与测地线信息几何主要讨论由参数控制的概率分布构成的流形$~M~$,称其为概率流形或统计流形。考虑由$~n~$个参数$~\boldsymbol{\xi} = (\xi_1, \xi_2, \cdots, \xi_n)~$控制的概率密度函数$~p(x, \boldsymbol{\xi})~$,这$~n~$个参数张成一个$~n~$维统计流形,流形上的每一个点都唯一确定一个概率分布。容易看出,欧氏距离并不能衡量这个流形上两点之间的距离,因此我们需要新的几何
1. 简介众所周知所有宏观系统都受到热力学第二定律的约束$$ \Delta S + \frac{\Delta Q}{T} = \Sigma \ge 0. $$但系统的可观测性质是如何与 $\Sigma$ 联系的呢?答案由热力学不确定关系(Thermodynamic Uncertainty Relation, TUR)给出。TUR 的一般形式如下$$ \Sigma \ge \frac{2\langle J \rangle^2}{\mathrm{Var}(J)}. $$其中 $J$ 是时间积分的流(例如粒子的位移,热流等等),$\langle J\rangle$ 是流的平均值,$\mathrm{Var}(J)$ 是流的涨落(方差)。TUR 对于连续时间马尔可夫过程的定态(steady state)成立。TUR 给出了一个对熵产生下界的估计。当此估计不为零时,它给出了更加强化的第二定律(相较于 $\Sigma \ge 0$ )。在许多情况下,直接测量熵产生是非常困难的,而流的均值与方差是较易测量的,因此在实验上 TUR 是估计熵产生的一个较好的方法。同时,TUR 也给出了衡量系统的精确程度(
Jiming Zheng
做一点统计物理