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1 Introduction1

This note aims to introduce information geometry without delving too deeply into differential geometry.
Information geometry treats probability distributions as points on a manifold. Its metric tensor is given by the
Fisher Information matrix. The most important structure in information geometry is the dually flat structure.
Information geometry has wide applications in statistical inference, machine learning, optimization, open
quantum systems and stochastic thermodynamics. It can describe the evolutionary dynamics of probability
distributions, decomposition of the entropy production, and it can also be used in thermodynamic inference.
These correspond to the Boltzmann, Clausius, and Gibbs’ approach in classical thermodynamics.

Research on geometric thermodynamics has a long history2. Gibbs has already found the geometric struc-
ture under classical thermodynamics3. After that, some mathematicians found that the geometric structure
of thermodynamics can be described by the contact geometry induced by Legendre transformation, which is
an odd-dimensional counterpart of symplectic geometry. Many of the work in this field is done by Arnold
and Zorich. About 44 years ago, George Ruppeiner find that the geometry of equilibrium thermodynamics
can be described by Riemannian geometry, where the metric tensor is the Hessian matrix of thermodynamic
entropy. In recent years, with the rise of stochastic thermodynamics, some scholars have begun to look for
a geometric language that can describe it. Stochastic thermodynamics is based on stochastic process and
stochastic calculus. So this geometric language turns out to be the geometric structure of probability distri-
butions. As far as I know, there are at least two types of geometric structure for probability distributions.
One is information geometry, the other one is Wasserstein geometry. Some scholars already shown that in
equilibrium states, the information geometry just goes back to the Ruppeiner geometry. In recent years,
information geometry has also shown great power in non-equilibrium thermodynamics.

This note is organized as follows. In section 2, we introduce the metric tensor on the manifold. In section
3, we introduce the dually flat structure of the manifold, which contains the dual connection in section 3.1,
dual flatness in section 3.2 and dual coordinate systems in section 3.3. In section 4, we introduce general
divergence functions on the manifold. The information geometric structure can also be introduced from
divergence functions. In section 5, we introduce the generalized Pythagorean theorem on the manifold,
which is induced by the flatness property. In section 6, we introduce the thermodynamic length, speed
limit and gradient flow on the manifold, which is related to the Boltzmann’s approach to thermodynamics.
In section 7, we introduce the geometrical interpretation of entropy production and decompose it, which is
related to the Clausius’ approach to thermodynamics. In section 8, we introduce the exponential distribution
and its relation to Maximum Entropy Principle, which is related to the Gibbs’ approach to thermodynamics.

2 Fisher Information Metric
Let’s consider probability distributions p(x,θ), where x is in the sample space and θ = {θ1, θ2, · · · , θn} is
a vector of parameters. All the probability distributions lies on a manifold. The local coordinates on this
manifold are these parameters. Now we want to figure out what is the geometric structure on this sort of
manifold. Some mathematicians have already proven that the only metric tensor which is covariant under
reparameterization and invariant under changing of variables is the Fisher Information metric tensor4.

The elements of Fisher Information metric is

gµν =

∫
dx p(x,θ)∂µ ln p(x,θ)∂ν ln p(x,θ), (1)

1As an informal introductory note, I skipped all the citations in the Introduction section.
2When I use the word “geometry” in this note, I’m talking about modern geometry, which is based on differential geometry.
3Classical thermodynamics here means equilibrium thermodynamics for classical systems.
4If these conditions are not necessary, we can also choose the Wasserstein metric as the metric tensor on the probability

manifold.
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where ∂µ denotes ∂
∂θµ

. The logarithm of probability is the so-called likelihood function in statistics.
It can be rewritten as an expectation

gµν = E[∂µ ln p(x,θ)∂ν ln p(x,θ)]. (2)

This expression is equivalent to the second order derivatives of the likelihood function

gµν = −E[∂µ∂ν ln p(x,θ)] (3)

The metric tensor tells us how to do the inner product in this space. The inner product of two vectors
A and B can be defined as

〈A,B〉 =
∑
µ,ν

gµνA
µBν . (4)

Where Aµ and Bν are components of vectors A and B respectively.
The metric tensor also tells us how to calculate the length in this space. The length is the so-called

statistical length in statistics or thermodynamic length in stochastic thermodynamics. It is defined as

L =

∫ τ

0

dt

√∑
µ,ν

gµν
dθµ

dt

dθν

dt
. (5)

3 Dual Structures
The most important and interesting structure of information geometry is its dual structure.

3.1 Dual Affine Connections
The tangent vectors of different points are not in the same space. They lies in their own tangent space
respectively. We need to figure out what is the relation between different tangent spaces. That’s why we
need to define connections. Roughly speaking, tangent vector is the ”velocity” along a curve, and connections
tells us the ”acceleration” along the curve. It’s the directional derivatives “∇” in calculus. The connection
also tells us how to do the parallel transport along an arbitrary curve.

In Riemannian geometry, we usually take the connection that is compatible with the metric tensor. This
compatibility means the inner product of any two vectors starting from a point is invariant under the parallel
transport along any curve. It means

〈A(0),B(0)〉 = 〈A(t),B(t)〉, ∀t ≥ 0. (6)

Connection is a map from the tangent space of a point to the tangent space of its nearby points. So
basically there are lots of way to define the map. In this sense, we find a family of connections in information
geometry, namely α-connections (∇α, α ∈ R). The invariant property under parallel transport is not true for
a general connection in information geometry. But the good thing is, the inner product can keep invariant
under the parallel transport of a connection and its dual connection. It means

〈A(0),B(0)〉 = 〈A(t),B∗(t)〉, ∀t ≥ 0. (7)

The parallel transport is taking on the same curve with different connections. This pair of connections are
called dual connections information geometry. A pair of dual connections can be expressed as (∇,∇∗). The
dual of a dual connection is the original connection

(∇∗)∗ = ∇. (8)

Furthermore, mathematicians found that the dual connection of ∇α is ∇−α

(∇α)∗ = ∇−α, (∇α)∗∗ = (∇−α)∗ = ∇α. (9)
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3.2 Dual Flatness
In Riemannian geometry, geodesics are defined by connections

∇θ̇θ̇ = 0. (10)

This means the velocity vector θ̇ is moving along the curve parallel to itself. In other words, ∇-geodesics
generalize the notion of “straight Euclidean” lines.

Flatness is a property of connections. If a connection is flat, then the geodesic lines compatible with the
connection are straight lines under some coordinate systems. This means the coordinates of any points on
the geodesic curve connecting point P and Q can be written as

θ(t) = tθP + (1− t)θQ. (11)

Where θP and θQ are the coordinates of points P and Q respectively.
In the language of differential geometry, flat means the curvature vanishes under some proper coordinate

systems. A flat space just looks like the Euclidean space. As a special case, Euclidean space is a flat space.
In information geometry, it turns out that if the manifold is flat with respect to a connection ∇α, then

it is also flat with respect to the dual connection ∇−α. There are only two flat connections in the α-family.
They are ∇1 and ∇−1.

3.3 Dual Coordinate Systems
Two coordinate systems {θµ} and {θ̃ν} are said to be dual to each other if their coordinate basis êµ and ˆ̃eν̃

satisfy
〈êµ, ˆ̃eν〉 = δµν . (12)

The two basis are related by Jacobi matrix

êµ =
∂θ̃ν
∂θµ

ˆ̃eν , ˆ̃eν =
∂θµ

∂θ̃ν
êµ. (13)

When {θµ} and {θ̃µ} are dual coordinate systems, there exist a pair of potential functions Θ(θ) and
Θ̃(θ̃), such that

θµ = ∂̃µΘ̃(θ̃), θ̃µ = ∂µΘ(θ) (14)
The elements of Fisher Information metric tensor gµν and its inverse g̃µν is given by the second order
derivatives of (convex) potential functions respectively

gµν = ∂µ∂νΘ(θ), g̃µν = ∂̃µ∂̃νΘ̃(θ̃). (15)

Moreover,
Θ(θ) + Θ̃(θ̃) = θµθ̃µ. (16)

This equation means {θµ} and {θ̃µ} are Legendre dual. Actually, the potential functions need not to be
strictly convex. In that case, the Legendre dual is reduced to Legendre-Fenchel dual.

Conversely, when a potential function Θ(θ) exists such that gµν = ∂µ∂νΘ(θ), then equation 14 gives the
dual coordinate systems.

4 Divergence
We can define divergence function between point P and point Q as

D [P‖Q] = Θ(θP ) + Θ̃(θ̃Q)−
∑
µ

θµP θ̃Q,µ. (17)

This type of divergence is called Fenchel-Young divergence. It is induced by a pair of dual convex functions.
The KL-divergence is a special case of Fenchel-Young divergence, where the Θ̃ becomes the negative Shannon
entropy.

4



When P = Q, the divergence function goes back to equation 16, otherwise it is always greater than zero.
Because of the duality between Θ and Θ̃, the first order derivatives of D [P‖Q] vanish. The second order

derivative gives the Fisher Information metric at point P

∂

∂θµP

∂

∂θνP
D [P‖Q] = gµν(P ). (18)

In fact, these properties imply that information geometric structure can also be built from a (Bregman)
divergence function. If we define the divergence function at first, then the metric tensor is given by its
second order derivatives and the dual connections is given by its asymmetric multi-derivatives. Therefore,
information geometry can also be regarded as a geometric structure of divergence function. In this case, the
duality is given by the Legendre-Fenchel duality of the generation function of a Bregman function.

5 Generalized Pythagorean Theorem
Any flat structure has generalized Pythagorean theorem, so does information geometry (when α = ±1).
Given three points P , Q and R, if the geodesic connecting P and Q are orthogonal to the dual geodesic
connecting Q and R, then the following Pythagorean theorem holds

D [P‖R] = D [P,Q] + D [Q‖R]. (19)

If the angle φ is greater than (less than) 90◦, the equal sign becomes > (<).
In the flat space, geodesics can be written as

γPQ : t 7→ θP + (θQ − θP )t (20)
γQR : t 7→ θ̃Q + (θ̃R − θ̃Q)t (21)

Therefore, the right hand side of equation 19 is

D [P‖Q] + D [Q‖R]

= Θ(θP ) + Θ̃(θQ)−
∑
µ

θµP θ̃Q,µ +Θ(θQ) + Θ̃(θR)−
∑
µ

θµQθ̃R,µ (22)

= D [P‖R] +
∑
µ

(θµQθ̃Q,µ − θµP θ̃Q,µ − θµQθ̃R,µ + θµP θ̃R,µ) (23)

= D [P‖R]−
∑
µ

(θµQ − θµP )(θ̃R,µ − θ̃Q,µ) (24)

= D [P‖R] + ‖γ̇PQ‖‖γ̇QR‖ cos(φ) (25)

Therefore the above statements on the equality and inequalities holds.
In a short summary, the structure of information geometry is (M, g,∇,∇∗). Every point on the manifold

is a probability distribution. The metric tensor on the manifold is Fisher Information metric. The key point
of information geometry is its dually flat structure. The dual structure is essentially defined by Legendre(-
Fenchel) dual. The length is calculated by an integration on the metric tensor. The dissimilarity or “distence”
is described by the divergence function.

6 Dynamical Properties on Probability Manifold
Dynamical properties can be obtained from the time evolution of probability distributions on the manifold.
These dynamical properties are strongly related to the Boltzmann’s approach of the second law.
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6.1 Thermodynamic Length and Speed Limit
If we take parameters θ to be time t, then the length of a evolution of a probability distribution is the
thermodynamic length[1]

L(τ) =
∫ τ

0

dt

√∫
dx p(x, t)

[
∂ ln p(x, t)

∂t

]2
. (26)

This means the evolution speed of the probability distribution can be characterized by an intrinsic speed vI ,
where

vI =

√∫
dx p(x, t)

[
∂ ln p(x, t)

∂t

]2
(27)

is the square root of Fisher Information.
The evolution speed of any observable R can be defined as

vR =
|d〈R〉/dt|√

Var[R]
. (28)

By using Cramér-Rao inequality, we can get the Thermodynamic Speed Limit[4]

vR ≤ vI . (29)

It means the evolution speed of any observable R is upper bounded by the intrinsic speed vI . This inequality
holds both for steady states and non-stationary states. This deficiency comes from the loss of information.

6.2 Gradient Flow
Information monotonicity is a wild known property of the probability evolution controlled by master equation
or Fokker-Planck equation. The monitonicity means the KL-divergence between the present distribution and
the steady state distribution is always decreasing

d

dt
DKL[p(x, t)‖π(x)] ≤ 0, (30)

where π(x) denotes the steady state distribution.
Furthermore, because the master equation and the Fokker-Planck equation are continuity equations for

discrete and continuous systems respectively, the probability evolution controlled by them is the gradient
flow on the probability manifold. For example, the Fokker-Planck equation can be rewritten as[2]

∂p(x, t)

∂t
= D

[
∂

∂p(x, t)
DKL[p(x, t)‖π(x)]

]
, (31)

where D is the weighted Laplacian operator defined as

D[∗] = ∇ · (µTp(x, t)∇[∗]). (32)

The gradient flow representation means the probability always evolves along the steepest direction to the
steady state distribution on the probability manifold5.

7 Pythagorean Theorem and Entropy Production Decomposition
Pythagorean theorem gives us a method to decompose the divergence into two parts. In thermodynamics,
this theorem tells us how to decompose the entropy production (or entropy production rate). These methods
of decomposition are non-equilibrium correspondences of the Clausius representation of the second law.

5In machine learning, this is also called the natural gradient.

6



7.1 Entropy Production Rate as a Projection
When we need to consider the entropy production, we cannot just consider the probability distribution on
the sample space. Instead, we need to consider path probability distributions, i.e. trajectory probability
distributions. That is because the entropy production is defined on the forward and backward trajectories.

The dimension of continuous time trajectories space is uncountable infinity. It’s geometry remains unclear.
However, we can consider the joint probability during a short time, i.e. P (xτ+dt,xτ ).6 The sample space of
the joint probability is the Cartesian product of the original space7

Ω′(τ + dt, τ) = Ω(τ + dt)× Ω(τ) = Ω2. (33)

Let’s take the overdamped Langevin system as an example. The transition rate is given by

T(xτ+dt | xτ ) =
1

(4πµTdt)
3
2

exp

[
−‖xτ+dt − xτ − µF τ (xτ )dt‖2

4µTdt

]
. (34)

The short-time forward path probability is

P (xτ+dt,xτ ) = T(xτ+dt | xτ )p(xτ ). (35)

The short-time backward path probability is given in a similar way

P †(xτ+dt,xτ ) = T(xτ | xτ+dt)p(xτ+dt). (36)

We can define a backward manifold as

MB(P ) =

{
P

∣∣∣∣P (xτ+dt,xτ ) = T(xτ | xτ+dt)

∫
dxτ P (xτ+dt,xτ )

}
. (37)

It’s easy to check that all the short-time backward path probabilities lie on the backward manifold. The
entropy production is the KL-divergence between the forward path probability and the backward path
probability. In the sense of projection theorem, it can be regarded as a projection from the forward path
probability onto the backward manifold. For any Q ∈ MB(P ), the entropy production rate sigmaτ is given
by the minimum projection[3]

στ = lim
dt→0

inf
Q∈MB(P )

1

dt
D [P‖Q]. (38)

7.2 Entropy Production Rate Decomposition
Because the entropy production is a KL-divergence in this space. If we choose appropriate intermediate
points to build the “right trangle”, then the entropy production can be decomposed into two parts, which
are the so-called housekeeping part and excess park. These methods of decomposition are related to the
Hatano-Sasa decomposition and Maes-Netočnỳ decomposition[2, 3].

σ = σHS
hk + σHS

ex , (39)
σ = σMN

hk + σMN
ex . (40)

In Hatano-Sasa decomposition, the intermediate point is the instantaneous steady state distribution. Its
housekeeping part represents the effect of non-conservative force, and its excess part represents the effect
of conservative force. In Maes-Netočnỳ decomposition, the intermediate point is give by the Wasserstein
distance, which represents the minimum entropy consumption to change the probability distribution.

These formalisms have something in common. The excess part is zero only if the system is on equilibrium
states. The housekeeping part is non-zero if the system is on non-stationary states.

6Here we use P to represent joint probability distributions, and p to represent the marginal probability distributions.
7It is a sort of discretization.
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8 Exponential Family and Maximum Entropy Principle
There are two special families of probability distributions. One is the exponential family, another one is the
mixture family. Any probability simplex belongs to both of the two families. And these two families give the
dual structure on any probability simplex. We will see that the exponential family plays an important role
in Maximum Entropy Principle. It implies that the information geometry is strongly related to the Gibbs’
approach of the second law in thermodynamics.

8.1 Geometric Structures of Exponential Family
If a probability distribution can be written in the following form

p(x,θ) = exp

[∑
µ

θµhµ(x) + k(x)− φ(θ)

]
, (41)

then it belongs to the exponential family. The functions hµ(x) are linearly independent, the function k(x)
is an arbitrary function and the function φ(θ) is the Log-normalizer. The function k(x) allows us to change
the measure from dx to dµ(x) = exp{k(x)}dx. It means the exponential family defines a family upon an
arbitrary measure. The function φ(θ) is a convex function and it is the generating function of the exponential
family.

φ(θ) can be rewritten as

φ(θ) = ln

∫
dµ(x) exp

{∑
µ

θµhµ(x)

}
. (42)

The corresponding dual coordinate system of the exponential family is

ηµ ≡ θ̃µ =
∂

∂θµ
φ(θ) =

∫
dµ(x) hµ(x)p(x, θ) = E[hµ(x)]. (43)

It is called expectation coordinate system8.

8.2 Dual Coordinate Systems in Maximum Entropy Principle
Maximum Entropy Principle maximize the entropy function under some constrains. We can define a function
C as follows

C = −
∫

dµ(x) p(x) ln
p(x)

q(x)

−
∑
µ

θµ
(∫

dµ(x) hµ(x)− E[hµ(x)]

)
(44)

− α

(∫
dµ(x) p(x)− 1

)
.

Maximum Entropy Principle asks us to maximize the function C. It turns out that the probability distribu-
tions that satisfy the Maximum Entropy principle belong to the exponential family. The coordinates and
the dual coordinates are the Lagrange multipliers {θµ} and expectation constrains {E[hµ(x)]} respectively.
They are Legendre dual of each other[5].

Maximum Caliber Principle is slightly different9 from Maximum Entropy Principle. The probability
distributions on states change to the probability distributions on trajectories. It is difficult to deal with (un-
countable) infinite dimensional space where the path probability lies in, so the relation between information
geometry and Maximum Caliber Principle still remains partially unclear10.

8Here φ plays the role of Θ, η plays the role of θ̃
9But it’s a big difference in mathematics, because dealing with infinite dimensional spaces requires functional analysis.

10at least for me.
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The relations between information geometry and Maximum Entropy Principle shows that the Gibbs’
approach of the second law also has a geometric interpretation. It implies that information geometry may
shed light on the relation between Maximum Caliber Principle and other thermodynamic representations.
This coincidence also implies that we can use the dual structure to infer the properties of a thermodynamic
system from its dual system[6].
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